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1. INTRODUCTION 
 

The field of aerodynamics has fascinated humans for centuries – from flight to free fall with a 

parachute – and integral to it is the concept of drag. 

 

A typical understanding of drag experienced in a fluid is that it is proportional to the velocity, 

as stated in Stokes’ law1. However, various intriguing factors that non-linearly impact the 

accuracy and applicability of this formula exist, and these can be significant considerations in 

applications involving bioengineering of devices that travel in bodily vessels, or the study of 

the motion of sperm cells or others.  

 

Stokes’ law is applicable only in cases of laminar flow, and under these conditions, one such 

effect is known as the wall effect (“effect of finite boundaries on the drag experienced by a 

rigid sphere settling along the axis of cylindrical tubes”)2. The difference between bounded and 

unbounded media is: 

 

 
Figure 1a – Object in Unbounded Medium 

 

 
Figure 1b – Object in Bounded Medium 

                                                        
1 Fowler, Michael. “Dropping the Ball (Slowly).” Stokes' Law, University of Virginia, 
galileo.phys.virginia.edu/classes/152.mf1i.spring02/Stokes_Law.htm. 
2 Song, Daoyun, Rakesh K. Gupta, and Rajendra P. Chhabra. "Wall effect on a spherical particle settling along 
the axis of cylindrical tubes filled with Carreau model fluids." Proceedings of Comsol Conference, Boston. 2011. 
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This essay aims to study the variation of the effect of the wall on the drag force experienced, 

with respect to the ratio of the object radius to the tube radius (relative radius). The dependent 

variable is the ratio of the drag in bounded to unbounded media, both theoretically and 

experimentally (relative drag). 

 

RESEARCH QUESTION: How does the relative radius of a sphere affect the relative drag 

force it experiences in a bounded medium? 

 
2. BACKGROUND INFORMATION 
 

 Forces on Falling Spheres 
 

When spheres fall vertically straight through cylinders, no lateral or rotational forces act. The 

downward force is 𝐹"#$%&' = −𝑚𝑔. Upward forces acting are drag and buoyancy (“net upward 

force exerted by a fluid on an object”3). In translational equilibrium, the object, here a sphere, 

travels at constant terminal velocity vt. 

 
Figure 2 – Free-body diagram for falling sphere 

 
𝐹"#$%&' = 𝐹,-./012/ + 𝐹450%	 (1) 

𝐹450% = 𝐹"#$%&' − 𝐹,-./012/	 (2) 

                                                        
3 Bonk, Ryan. “Buoyancy.” The Physics of Viking Ships, University of Alaska, Fairbanks, ffden-
2.phys.uaf.edu/webproj/212_spring_2017/Ryan_Bonk/purtyWebProj/vikingSlide1.html. 

	Fweight	
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The force of buoyancy is the pressure difference between the top and bottom of the sphere 

multiplied by the cross-sectional area this acts on4.  

 
𝐹450% = 𝑚BC&#5#𝑔 − 𝑃EF-$4 × 𝐴𝑟𝑒𝑎	 (3) 

 
The pressure difference in a fluid is ℎ𝜌𝑔, where h is the difference in height, and 𝜌 is the 

density of the fluid. Since 𝜌 = O
P

, 𝑚 = 𝜌𝑉. 

 
𝐹450% = 𝜌BC&#5#𝑉𝑔 − 𝜌EF-$4 × 𝐴𝑟𝑒𝑎 × ℎ × 𝑔	 (4) 

 
The product of area and height is equal to the volume of fluid displaced (also V). 
 

𝐹450% = 𝜌BC&#5#𝑉𝑔 − 𝜌EF-$4𝑉𝑔 (5) 
 
For a sphere of radius r0, 𝑉 = T

U
𝜋𝑟WU. Thus, in the case of a falling sphere: 

 

𝐹450% =
4
3𝜋𝑟W

U𝑔(𝜌BC&#5# − 𝜌EF-$4) (6) 

 
 Relevant Concepts in Fluid Mechanics: 

 
2.2.1. Fluids and Forces 

 
Fluids can refer to gases or liquids. Shear deformation in fluids arises from shear stress 

(𝜏/𝑃𝑎), which is the force per unit are acting parallel to an infinitesimal surface element5. This 

follows the below proportionality6: 

𝜏 ∝
𝑑𝑢
𝑑𝑥 	

(7) 

Where u refers to the velocity of flow and x is the diameter of flow. 4-
4`
/𝑠bc is equal to the 

velocity gradient, which represents the rate of deformation in the fluid.  

 

                                                        
4 Bonk, Ryan. “Buoyancy.” The Physics of Viking Ships, University of Alaska, Fairbanks, ffden-
2.phys.uaf.edu/webproj/212_spring_2017/Ryan_Bonk/purtyWebProj/vikingSlide1.html. 
5 Cimbala, John M. “What Is Fluid Mechanics?” Fluid Mechanics Electronic Learning Supplement, Pennsylvania 
State University, www.me.psu.edu/cimbala/Learning/Fluid/Introductory/what_is_fluid_mechanics.htm. 
6 Brennen, C.E. Internet Book on Fluid Mechanics. Dankat Publishing, 2016. 
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The constant of proportionality is the dynamic viscosity (𝜂/𝑃𝑎𝑠) (a fluid’s resistance to 

deformation under shear stress)7.  

𝜏 = 𝜂
𝑑𝑢
𝑑𝑥 	

(8) 

 

 
Figure 3 – Proportionality of 𝜏 and 4-

4`
 

 
In containers, cohesive forces act between particles of the fluid8 and adhesive forces act those 

between two media (i.e. fluid and container)9. At wall interfaces, adhesive forces are 

dominant10. This causes the no-slip condition – fluid immediately adjacent to the wall has zero 

speed11. 

 
2.2.2. Types of Flow 

 
- Laminar flow12 occurs when a fluid flows smoothly, when viscous forces dominate 

inertial forces.  

- Turbulent flow13 is characterized by irregular fluctuations in the flow and occurs when 

the opposite is the case. 

 

  

                                                        
7 Brennen, C.E. Internet Book on Fluid Mechanics. Dankat Publishing, 2016. 
8 Nave, R. Surface Tension, HyperPhysics, hyperphysics.phy-astr.gsu.edu/hbase/surten.html. 
9 Nave, R. Surface Tension, HyperPhysics, hyperphysics.phy-astr.gsu.edu/hbase/surten.html. 
10 Nave, R. Surface Tension, HyperPhysics, hyperphysics.phy-astr.gsu.edu/hbase/surten.html. 
11 Brennen, C.E. Internet Book on Fluid Mechanics. Dankat Publishing, 2016. 
12 Nakayama, Y. Introduction to Fluid Mechanics. Butterworth-Heinemann, an Imprint of Elsevier, 1999. 
13 Nakayama, Y. Introduction to Fluid Mechanics. Butterworth-Heinemann, an Imprint of Elsevier, 1999. 

Gradient	=	𝜂 
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Two forces act in flowing fluids: 

- Inertial forces result from resistance to change in momentum.14 

- Viscous forces result from resistance to flow (shear deformation of fluid).15 

 

Reynolds’ Number16 is the ratio between inertial and viscous forces, and characterizes the flow, 

𝜌 is the fluid density and 𝑑 is the diameter of flow. 

𝑅𝑒 =
𝜌F𝑢l

𝜂 m𝑢𝑑n
=
𝜌𝑢𝑑
𝜂 	 (9) 

 
When	𝑅𝑒 < 1, this indicates dominance of viscous forces and hence laminar flow – this 

condition is known as Stokes’ flow17. 𝑅𝑒 > 1	does not necessitate turbulent flow. For flow 

around spheres, streamline separation around spheres, causing turbulent flow, research has 

shown that this does not occur until Re =17.18 

 
 Drag 

 
Drag comprises of two forces: 

o Friction Drag (arises from friction between the object and the fluid layers, and 

results in shear (parallel deformation), acting parallel to an infinitesimal surface 

element dA19 (𝜏 × 𝐴𝑟𝑒𝑎). 

o Pressure Drag arises from pressure differences between the front and back of 

the object, and acts perpendicular to an infinitesimal surface element dA20 

(𝑝 × 𝐴𝑟𝑒𝑎). 

 

                                                        
14 d'Alembert, Jean-Baptiste le Rond. "Force of inertia." The Encyclopedia of Diderot & d'Alembert 
Collaborative Translation Project. Translated by John S.D. Glaus. Ann Arbor: Michigan Publishing, University of 
Michigan Library, 2006. Web. [fill in today's date in the form 18 Apr. 2009 and remove square brackets]. 
<http://hdl.handle.net/2027/spo.did2222.0000.714>. Trans. of "Force d'inertie," Encyclopédie ou Dictionnaire 
raisonné des sciences, des arts et des métiers, vol. 7. Paris, 1757. 
15 “Viscous Force.” Viscous Force - Schlumberger Oilfield Glossary, Schlumberger Oilfield Glossary, 
www.glossary.oilfield.slb.com/en/Terms/v/viscous_force.aspx. 
16 Nakayama, Y. Introduction to Fluid Mechanics. Butterworth-Heinemann, an Imprint of Elsevier, 1999. 
17 Lautrup, Benny. “Creeping Flow.” Physics of Continuous Matter, The Niels Bohr Institute, 
www.cns.gatech.edu/~predrag/GTcourses/PHYS-4421-04/lautrup/7.7/creep.pdf. 
18 Jenson, V. G. "Viscous flow round a sphere at low Reynolds numbers (< 40)." Proceedings of the Royal 
Society of London. Series A. Mathematical and Physical Sciences 249.1258 (1959): 346-366. 
19 Nakayama, Y. Introduction to Fluid Mechanics. Butterworth-Heinemann, an Imprint of Elsevier, 1999. 
20 Nakayama, Y. Introduction to Fluid Mechanics. Butterworth-Heinemann, an Imprint of Elsevier, 1999. 
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The horizontal components of both forces act to resist flow. Here, that of 𝜏 (friction drag) is 

𝜏 sin 𝜃, and that of p (form drag) is 𝑝 cos 𝜃.  

 
Figure 4 – Drag Force Components 

 

Integrating these across all surface elements results in the total force produced from them21: 

𝐹E5$2'$.1 = x 𝜏 sin 𝜃 𝑑𝐴
y

W
	 (10) 

𝐹C5#BB-5# = x 𝑝 cos𝜃 𝑑𝐴
y

W
	 (11) 

 
Under conditions of Stokes flow around a sphere of radius r0 moving with velocity v, the 

solutions are22: 

𝐹E5$2'$.1 = 4𝜋𝜂𝑟W𝑣	 (12) 

𝐹C5#BB-5# = 2𝜋𝜂𝑟W𝑣	 (13) 

𝐹450% = 𝐹E5$2'$.1 + 𝐹C5#BB-5# 	= 6𝜋𝜂𝑟W𝑣	 (14) 

 
Equation (6) equals: 

6𝜋𝜂𝑟W𝑣 =
4
3𝜋𝑟W

U𝑔|𝜌BC&#5# − 𝜌EF-$4} (15) 

6𝜋𝜂𝑣 =
4
3𝜋𝑟W

l𝑔|𝜌BC&#5# − 𝜌EF-$4}	 (16) 

 
  

                                                        
21 Nakayama, Y. Introduction to Fluid Mechanics. Butterworth-Heinemann, an Imprint of Elsevier, 1999. 
22 “SIO 217D: Atmospheric and Climate Sciences IV: Atmospheric Chemistry.” :: SCRIPPS INSTITUTION OF 
OCEANOGRAPHY : UC SAN DIEGO ::aerosols.ucsd.edu/sio217dwin14.html. 

𝝉𝒅𝑨 

𝒑𝒅𝑨 
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 Navier-Stokes Equations 
 

The Navier-Stokes equations are a set of partial differential equations that describe the flow of 

incompressible fluids, essentially represent Newton’s second law but for fluids. These are 

applied to laminar flow between parallel surfaces. The equation, for direction x in a 1-

dimensional flow, is23: 

𝜌 �
𝜕𝑢
𝜕𝑡 + 𝑢

𝜕𝑢
𝜕𝑥 + 𝑣

𝜕𝑢
𝜕𝑦� = 𝜌𝑋 −

𝜕𝑝
𝜕𝑥 + 𝜂 �

𝜕l𝑢
𝜕𝑥l +

𝜕l𝑢
𝜕𝑦l�	 (17) 

 
Where u is the velocity in the x-direction, v is the velocity in the y-direction, p is the pressure, 

and X is the acceleration in the x-direction. In one-dimensional flow between parallel surfaces 

(in direction x) that is steady and uniform (velocity constant with displacement and time): 

 

§ �-
�'
= 0 (velocity is constant) 

§ �-
�`
= 0 (velocity does not vary with displacement in x) 

§ 𝑣 = 0 (no flow velocity in y) 

§ 𝑋 = 0 (no body force, and acceleration, in x) 

 
Thus: 

𝜂
𝜕l𝑢
𝜕𝑦l =

𝑑𝑝
𝑑𝑥 	

(18) 

 
Integrating both sides of this equation with respect to y twice results in an expression for the 

velocity: 

 

𝜂x
𝜕𝑢
𝜕𝑦 𝜕𝑦 =

𝑑𝑝
𝑑𝑥

x𝑦	𝑑𝑦 + x𝑐c 	𝑑𝑦	 (19) 

𝑢 = �
1
2𝜂� �

𝑑𝑝
𝑑𝑥� 𝑦

l + 𝑐c𝑦 +	𝑐l		 (20) 

 
Applying the no-slip condition for parallel surfaces separated by a distance h, u = 0 at y = 0 

and y = h. The equation simplifies to (see Appendix 10.2 for derivation): 

 

                                                        
23 Nakayama, Y. Introduction to Fluid Mechanics. Butterworth-Heinemann, an Imprint of Elsevier, 1999. 
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𝑢 = �
1
2𝜂� �

𝑑𝑝
𝑑𝑥�𝑦

(𝑦 − ℎ)	 (21) 

 
The velocity u varies parabolically with displacement y. 
 
 

 Modelling the Wall Effect 
 

2.5.1. Model 
 
Consider a sphere of radius r0 moving horizontally through unbounded fluid of viscosity 𝜇 at 

velocity v ms-1. The total drag force experienced is 6𝜋𝜂𝑟W𝑣. When the sphere travels through 

a fluid bounded in a cylinder of radius R at velocity v ms-1, 𝐹450% = −𝑘𝑣, where k is the drag 

coefficient. In this case, 𝑘 > 6𝜋𝜂𝑟W due to an increase in velocity gradient at the sphere, as a 

parabolic variation of velocity with is formed. This results in increased shear stress, increased 

skin friction drag and increased drag force. 

 
Figure 5 – Cross-sectional depiction of radii. 

 
In the sphere’s reference frame, the fluid moves at velocity v ms-1 in the opposite direction. 

Since v is constant, it must be equal at all points in the flow; therefore, the velocity of fluid 

immediately adjacent to the sphere is equal to the velocity of fluid ahead of the sphere. Hence, 

in a parabolic velocity distribution, the maximum (centreline) velocity is also v.  

 

It is also known that the zeroes of this distribution lie at y = 0 and y = R – r, where r is the 

radius of any cross-sectional circle in the sphere, ranging from 0 to r0. 

 

If the velocity at any point on the distribution is u, then: 

 



Session May 2020 
 
How does the relative radius of a sphere affect the relative drag force it experiences in a bounded medium? 
 

 11 

𝑢 = 𝑎𝑦|𝑦 − (𝑅 − 𝑟)}	 (22) 
 
Where a is an unknown scale factor. First, a is determined, as this allows the value of du/dy at 

y = R – r to be determined in terms of r, using which the shear stress and frictional drag can be 

computed. 

 
Figure 6 – Parabolic velocity distribution 

 
When 𝑦 = m�b5

l
n, 𝑢 = 𝑣: 

𝑣 = −𝑎 �
𝑅 − 𝑟
2 ��

𝑅 − 𝑟
2 �	 (23) 

𝑎 =
−4𝑣

(𝑅 − 𝑟)l 	
(24) 

 
The velocity distribution function is: 
 

𝑢 =
−4𝑣

(𝑅 − 𝑟)l 𝑦
|𝑦 − (𝑅 − 𝑟)} (25) 

 
The velocity gradient is: 
 

𝑑𝑢
𝑑𝑦 =

−4𝑣
(𝑅 − 𝑟)l

|2𝑦 − (𝑅 − 𝑟)}	 (26) 

 
At 𝑦 = 𝑅 − 𝑟, the surface of the sphere: 
 

𝑑𝑢
𝑑𝑦 =

−4𝑣
(𝑅 − 𝑟)l

|2(𝑅 − 𝑟) − (𝑅 − 𝑟)} =
−4𝑣
𝑅 − 𝑟	

(27) 

 
The shear stress, as per equation (8), is: 
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𝜏 =
−4𝜂𝑣
𝑅 − 𝑟 	

(28) 

 
As indicated by equation (10), the component of the shear stress contributing to drag is equal 
to 𝜏 sin 𝜃.  

 
Figure 7 – Shear Stress at arbitrary value of r 

 
At a value of r between the given range: 

sin 𝜃 =
𝑟
𝑟W
	 (29) 

𝜏 sin 𝜃 =
−4𝜂𝑣
𝑅 − 𝑟 	×

𝑟
𝑟W
	 (30)	 

 
To calculate the drag force generated by the increased shear stress caused by the wall, equation 

(30) must be integrated with respect to dA. In cylindrical coordinates, dA = r dr d𝝓. Hence: 

 

𝐹E5$2'$.1("0FF) = x 𝜏 sin 𝜃 𝑑𝐴
y

W
= 	
−4𝜂𝑣
𝑟W

x x
𝑟l

𝑅 − 𝑟

5�

W

l�

W
	𝑑𝑟	𝑑𝜙	 (31) 

 
Upon integrating using u-substitution (see Appendix 10.3), the following is obtained as the 

magnitude (absolute value) of this force: 

𝐹E5$2'$.1("0FF) =
8𝜋𝜂𝑣
𝑟W

�𝑅l ln �
𝑅

𝑅 − 𝑟W
� − 𝑅𝑟W −

𝑟Wl

2
�	 (32) 

 
Hence, the total drag force equates to 𝐹E5$2'$.1("0FF) + 𝐹-1,.-14#4: 
 

𝒅𝑨 
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𝐹�50%(�.'0F�0FF) =
8𝜋𝜂𝑣
𝑟W

�𝑅l ln �
𝑅

𝑅 − 𝑟W
� − 𝑅𝑟W −

𝑟Wl

2
� + 	6𝜋𝜂𝑟W𝑣	 (33) 

 
Dividing the contents of the bracket by 𝑟Wl allows factorization as follows: 
 

𝐹�50%(�.'0F�0FF) = 2𝜋𝜂𝑣𝑟W �
4𝑅l

𝑟Wl
ln �

𝑅
𝑅 − 𝑟W

� −
4𝑅
𝑟W
+ 1�	 (34) 

 
The numerator and denominator within the logarithm are divided by R; 
 

𝐹�50%(�.'0F�0FF) = 2𝜋𝜂𝑣𝑟W �
4𝑅l

𝑟Wl
ln �

1

1 − 𝑟W𝑅
� −

4𝑅
𝑟W
+ 1�	 (35) 

 
The increase in drag force is computed by considering the ratio of the total drag in a wall to the 

total drag in an unbounded medium. 

 

𝐹�50%(�.'0F�0FF)

𝐹�50%(�.'0F�1,.-14#4)
=
𝐹�
𝐹�

=

2𝜋𝜂𝑣𝑟W �
4𝑅l
𝑟Wl

ln   1
1 − 𝑟W𝑅

  − 4𝑅𝑟W
+ 1¡	

6𝜋𝜇𝑣𝑟W
	 (36)

 

𝐹�
𝐹�

=
1
3 �
4𝑅l

𝑟Wl
ln �

1

1 − 𝑟W𝑅
� −

4𝑅
𝑟W
+ 1� =

4𝑅l

3𝑟Wl
ln �

1

1 − 𝑟W𝑅
� −

4𝑅
3𝑟W

+
1
3	

(37) 

 
Defining the variable in the equation to be 𝑐 = 5�

�
, where 𝑟W < 𝑅, in the range 0 < 𝜆 < 1, and 

the output as relative drag m𝑘450% =
£¤
£¥
n, equation (37) is re-expressed: 

 

𝑘450% =
𝐹�
𝐹�

=
4
3𝑐l ln �

1
1 − 𝑐� −

4
3𝑐 +

1
3	

(38) 

 
The ratio examined, in this model, is not directly dependent on the values of 𝑟W and 𝑅, but on 

their ratio 𝑐 = 5�
�

. 

 

When plotted, while undefined at 𝑐 = 0 (indicative of unbounded medium), the limit of the 

function at this value is 1, which adheres to the expectation that £¥
£¥
= 1. Furthermore, the 

expectation at 𝑐 = 1 would be that the drag force is infinite, as the radius of the sphere and 
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cylinder are equal, resulting in infinite velocity gradient. This is the case here, as at 𝑐 = 1, a 

vertical asymptote is found. 

 

 
 

Graph 1 – Theoretical Function for Wall Effect (Equation 38) 
 

In a falling sphere viscometer, the force remains constant as the effective weight (weight – 

buoyant force) is constant regardless of the wall. However, an increased drag force means that 

the terminal velocity attained is lower due to greater resistance with the same increase in 

velocity. 

 

2.5.2. Assumptions 
 

This model is valid under the following assumptions: 

 

§ The wall effect on drag only occurs due to increase of frictional drag, not pressure drag 

as well. 

§ The velocity gradient in an unbounded medium is equivalent to zero (increase in velocity 

is spread over infinite distance from the sphere). 

§ All flow is strictly laminar. 

  

c	

kdrag	
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3. VARIABLES 
 

 Independent Variable 
 

As per formulated equation (38), the independent variable in the investigation is the relative 

radius of the sphere (ball) m𝑐 = 5�
�
n. Since a single tube of constant diameter is used, this is 

varied by varying the radius of ball bearings 𝑟W. Both r0 and R were measured using a Vernier 

Calliper (Appendix 10.4). Uncertainty calculations for c are in Appendix 10.7. 

 

Ball Radius 
𝒓𝟎 ± 𝟎. 𝟎𝟏𝒄𝒎 

Tube Radius 
𝑹 ± 𝟎. 𝟎𝟏𝒄𝒎 

Relative Radius 
𝒄 = 𝒓𝟎/𝑹 

Uncertainty in 
Relative Radius 

∆𝒄 
0.15 1.25 0.120 0.009 
0.32 1.25 0.254 0.010 
0.48 1.25 0.381 0.011 
0.64 1.25 0.508 0.012 
0.79 1.25 0.635 0.013 
0.95 1.25 0.762 0.014 

Table 1 – Independent Variable Values 
 

 Dependent Variable 
 
The ratio of the drag force in a bounded medium to that in an unbounded medium (𝐹�/𝐹�) is 

the unitless dependent variable, “relative drag” (𝑘450%). When terminal velocity (vt) is reached 

and Σ𝐹 = 0, measured viscosity (𝜂) is solved for. Equation (16) is rearranged for this: 

 

𝜂 =
2𝑔𝑟Wl|𝜌BC&#5# − 𝜌F$°-$4}

9𝑣'
	 (39) 

 

Since 𝐹	 ∝ 𝜂 in Stokes’ Law, the measured viscosity is increased by the same factor (𝑘450%). 

Hence: 𝑘450% =
±
±¥

, the ratio of 𝜂 to the viscosity that would be measured in an unbounded 

medium (𝜂�). 

 
𝜂 is determined by calculating the terminal velocity, by tracking the position y of the sphere as 

it falls  𝜂� is determined using non-linear extrapolation of 𝜂 to 𝑐 = 0. 
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 Controlled Variables 
 

Controlled 
Variable Description Value 

Viscosity of Fluid 
(𝜂) 

Affects the experienced drag; controlled by 
using the same fluid glycerine at the same 

concentration.  

Experimentally 
Determined 

Temperature 

Affects density and viscosity of fluid, and 
hence the drag and buoyant forces 

experienced. Controlled using thermometer 
and thermostat (6 hours equilibration time). 

(25.0 ± 0.25)℃ 

Density of Fluid 
(𝜌F$°-$4) 

Affects the buoyant force drag; controlled by 
using the same fluid glycerine at the same 

concentration. 
 

Due to the adhesive nature of the fluid, 
determining the volume for density 

calculations was subject to inaccuracy. Hence, 
literature values24 were used. 

 
The given uncertainty is a sum of the 

interpolated value of the density at 25.0℃ and 
half the difference of the values ±0.25℃ 

(Appendix 10.5). 

(1017.38 ± 0.63) 
𝑘𝑔𝑚bU 

Rotational Energy 

Rotational motion impacts drag – this results 
in motion of fluid on the surface of the ball, 
impacting the velocity gradient. Using the 

release mechanism minimizes any such 
effects. 

0 J 

  

                                                        
24 Glycerine Producers' Association. Physical properties of glycerine and its solutions. Glycerine Producers' 
Association, 1963. 
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Sphere Density 
(𝜌BC&#5#) 

 
This also affect the buoyant force. Although 

accountable if measurements of each ball type 
are used, due to the minute mass of the 

smaller ball, this is considered constant by 
using the same material for each – AISI 52100 

steel (American Iron & Steel Institute). 
 

The density is determined using the largest 
ball (known volume = (3.59 ± 0.03) cm3, 
measured mass = (28.04 ± 0.01) g). This 

value is exactly that provided by the 
manufacturer25. 

 

(7.81 ± 0.07) 
𝑔𝑐𝑚bU 
= 

(7810 ± 	70) 
𝑘𝑔𝑚bU 

Minimum height of 
region of fall 

analysed 

The end effect arises from the proximity of the 
bottom of the tube to the falling sphere. This 

is negligible if the distance to the end is lesser 
than the radius of the tube26. 

> 1.25𝑐𝑚 

Horizontal distance 
of camera from tube 

 
Parallax in video analysis can distort velocity 
measurements. the camera is positioned as far 
away as possible without compromising the 
clarity of the balls, which also impacts the 

accuracy of video analysis. 
 

(107.10	
± 0.05)	𝑐𝑚 

 
 
  

                                                        
25 AZoM. “AISI 52100 Alloy Steel (UNS G52986).” AZoM.com, AZoM, 26 Sept. 2012, 
www.azom.com/article.aspx?ArticleID=6704. 
26 Tanner, R. I. "End effects in falling-ball viscometry." Journal of Fluid Mechanics 17.2 (1963): 161-170. 
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4. EXPERIMENTAL DESIGN 
 

 Apparatus 
 

APPARATUS 

Vernier Calliper (±0.01𝑐𝑚) Tube (Radius = 1.25cm ±0.01𝑐𝑚) 

Chrome Steel Ball Bearings (AISI 52100)27 of Radii 0.15cm, 0.32cm, 0.48cm, 0.64cm, 
0.79cm, 0.95cm (±0.01𝑐𝑚). 

Glycerine Fluid (100% Glycerol) Top Pan Balance (±0.01𝑔) 

Thermometer (±0.25℃) Video Camera with 240fps frame rate 

Tripod Stand Measuring Tape (±0.05𝑐𝑚) 

Iron Nail 3 × 9𝑉 Cells 

Crocodile Connector Wires Enamel-Coated Copper Wire 

Bubble Wrap Magnet (to remove ball bearings) 

 
 

 
 
 
 
 

Figure 8 – Ball Bearings Used  
  

                                                        
27 AZoM. “AISI 52100 Alloy Steel (UNS G52986).” AZoM.com, AZoM, 26 Sept. 2012, 
www.azom.com/article.aspx?ArticleID=6704. 

0.15cm 0.32cm 0.48cm 0.64cm 0.79cm 0.95cm 
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 Setup 

 
Figure 9 – Diagram of tube 

 
§ The chrome steel ball bearings fall through a tube of height 70.0cm. However, the height 

to which their motion is analysed is shorter than this. This is because the tube is easily 

pushed to disequilibrium. The bottom was inserted through a wide cardboard box, in order 

to ensure this does not happen, reducing this distance.  

 

 
Figure 10 – Tube Passing Through Cardboard Box 

 

Tube 

Cardboard 
Box 
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§ All measurements were taken using video analysis, conducted on the free software 

Tracker28. 

 
§ Glycerine was selected due to its high viscosity. If maximum speed is considered 

(considering maximum possible Reynolds’ number): 

 

Quantity Value 

Maximum average speed (	c = 0.381) 0.0901 ms-1 

Viscosity (𝜂) at 25℃ (interpolated from literature29 
(Appendix 10.6)) 

0.93013 Pas 

Density at 25℃ 1017.38 kg m-3 

Diameter of bearing 0.0048	 × 2 = 0.0096𝑚 

 
Table 2 – Reynolds’ Formula Inputs 

 
Inserting these values in equation (9), the Reynolds’ number is computed: 
 

0.0901𝑚𝑠bc × 1017.38	𝑘𝑔𝑚U × (0.0250 − 0.0096)	𝑚
0.9489	𝑃𝑎	𝑠 = 	1.49 

 
Though greater than 1, this is significantly lower than Re = 17, where flow separation occurs.30 

 
§ Ball bearings were dropped using a release mechanism: a solenoid made using an iron 

nail, connected to a 27-volt power supply and a switch. When turned on, the nail was 

magnetized, and the ball bearing was lifted and placed into the tube (filled with glycerine) 

– its position was within the fluid to avoid a change of medium and any change in rate of 

increase of drag. This rested on the tube. When demagnetized, the ball fell straight, 

without rotation about a horizontal axis and was released stably, which could not be 

achieved by hand. 

 

                                                        
28 Brown, Douglas. Tracker Video Analysis and Modeling Tool. Vers. 5.1.3. Computer software. 2020. 2 Feb. 
2020 <http://physlets.org/tracker/>. 
29 Glycerine Producers' Association. Physical properties of glycerine and its solutions. Glycerine Producers' 
Association, 1963. 
30 Jenson, V. G. "Viscous flow round a sphere at low Reynolds numbers (< 40)." Proceedings of the Royal 
Society of London. Series A. Mathematical and Physical Sciences 249.1258 (1959): 346-366. 
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Figure 11 – Picture of Release Mechanism 

 
 Video Analysis – Parameters & Calibration 

 

Parameter Value 

Distance from Tube (D) (107.10	 ± 0.05)	𝑐𝑚 

Height of Camera Lens (H) (54.6 ± 0.05)	𝑐𝑚 

Video Frame Rate 30 fps 
 

Table 3 – Video Analysis Parameters 
 

In all analysis, the length was calibrated by setting a line crossing the tube, parallel to the 

aligned x-axis, equal to the diameter of the tube. 

 

 
Figure 12 – Tube and Ball in Tracker Software 

(Solenoid) 
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Figure 13 – Screenshot of Tracking (r0 = 0.48cm) 

 
 Safety Considerations 

 
- Care taken while handling all electric components to the release mechanism due to 

moderate voltage involved. 

- Padding (bubble wrap) pushed to its bottom to reduce time taken for the momentum of 

the ball bearings to decrease to zero and hence impact force, due to tube’s highly fragile 

nature. 

- Tube passed though Cardboard Box (Figure 10) to increase stability by widening base, 

hence preventing falls. 

- Mercury thermometer handled with extreme care. 
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5. DATA & ANALYSIS 
 

 Calculating Terminal Velocities 
 

Terminal velocities (vt) were found by considering the strongly linear portions of the graphs of 

vertical displacement (y/m) against time (t/s), and calculating the gradients. The coefficient of 

determination (R2 value) for all linear graphs was greater than 0.999, which strongly supports 

linearity of y variation and hence constant vt. 

 
Times were calculated by considering frame duration. Given a frame rate of 30fps, each frame 

was equivalent to c
UW
𝑠. The distance was measured with an uncertainty based on the smallest 

pixel; however, due to other sources of uncertainty (e.g. parallax), this was not reflective of the 

overall uncertainty. An arbitrary number of decimal places (6) was hence used for determining 

statistical measures, which were used to define the decimal places of all mean velocities. 5 

repeats were carried out for each value of 𝑐. Since only the magnitude of the terminal velocity 

is necessary for calculation, only absolute values are considered. 

 

Relative 
Radius 
𝒄 = 𝒓𝟎/𝑹 

Terminal Velocity (𝒗𝒕)/	𝒎𝒔b𝟏 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean 

0.120 0.022047 0.026885 0.027085 0.027021 0.028870 0.027465  

0.254 0.074734 0.072006 0.077554 0.072236 0.075312 0.074368 

0.381 0.090000 0.089749 0.091344 0.090388 0.088981 0.090092 

0.508 0.064392 0.065824 0.065836 0.064784 0.065995 0.065366 

0.635 0.034252 0.033116 0.032083 0.033564 0.035510 0.033705 

0.762 0.006301 0.006250 0.006112 0.006292 0.006063 0.006204 

 
Table 4 – Raw Data of Terminal Velocities 

 
The value struck through was considered anomalous due to significant deviation from other 

values. Hence, the mean and standard deviation for 𝑐 = 0.120 were calculated using values 

from trial 2 to 5. Another observation that can be found in the given data is that the value of 

the velocity for 𝑐 = 0.762 is far lower than any other value by an approximate factor of 5. This 
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trend continues in an even more drastic fashion as viscosities and hence 𝑘450%	are calculated, 

and is evaluated in Section 7 (Evaluation). 

 
Since no accurate experimental measure of uncertainty exists, standard deviation was used. 

Percentage uncertainties were then calculated; since only 5 repeats were taken, the data was 

insufficient have an accurate measure of the standard deviation. Hence, the maximum 

fractional uncertainty found was considered for all values of 	𝑐, and the absolute uncertainties 

were recalculated. These defined decimal places assigned. 

 

Relative 
Radius 
𝒄 = 𝑟W/𝑅 

Uncertainty 
in Terminal 

Velocity 
(∆𝒗𝒕)/𝒎𝒔b𝟏 

Fractional 
Uncertainty 

in 𝒗𝒕 m
∆𝒗𝒕
𝒗𝒕
n 

MAX	
∆𝒗𝒕
𝒗𝒕

 
Recalculated 	
∆𝒗𝒕/𝒎𝒔b𝟏 

Recalculated 	
∆𝒗𝒕/𝒎𝒔b𝟏 
(rounded) 

Mean Terminal 
Velocity  
(𝒗𝒕)𝒎𝒔b𝟏 

0.120 0.00081 0.029646 

0.037980 

0.00104 0.0010 0.0275 

0.254 0.00231 0.031029 0.00282 0.0028 0.0744 

0.381 0.00087 0.009638 0.00342 0.0034 0.0901 

0.508 0.00073 0.011121 0.00248 0.0025 0.0654 

0.635 0.00128 0.037980 0.00128 0.0013 0.0337 

0.762 0.00011 0.017587 0.00024 0.0002 0.0062 

 
Table 5 – Uncertainties in terminal velocity 

 
Correct to three significant figures (as per the mean 𝑣'), fractional uncertainty is 0.0380 
[3.80%]. 
 

 Calculating Viscosity 
 
Equation 41 is used to calculate viscosities, using the above mean velocities, values of r0 

present in table 1, and values of 𝜌BC&#5#  and 𝜌EF-$4  from the table of controlled variables. 

Uncertainties are calculated as follows: 

 
∆𝜂
𝜂 =

2∆𝑟W
𝑟W

+
∆𝑣'
𝑣'

+
∆|𝜌BC&#5# −	𝜌EF-$4}
𝜌BC&#5# −	𝜌EF-$4

+
∆𝑔
𝑔 	 (40) 
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𝜌BC&#5# −	𝜌EF-$4 = (7810 ± 70)	𝑘𝑔𝑚bU − (1015.67 ± 0.61)	𝑘𝑔𝑚bU

= (6794.33± 70.61)	𝑘𝑔𝑚bU 

 

∆|𝜌BC&#5# −	𝜌EF-$4} = 70.61	𝑘𝑔𝑚bU	 

∆|𝜌BC&#5# −	𝜌EF-$4}
𝜌BC&#5# −	𝜌EF-$4

=
70.61
6794.33 = 0.01039 

∆𝑣'
𝑣'

= 0.0380 

2∆𝑟W = 0.0002𝑚 

The value used for gravitational acceleration g is the constant 9.81 ms-2, with no uncertainty. 
 

Relative 
Radius 
𝒄 = 𝑟W/𝑅 

Ball 
Radius 
𝒓𝟎/𝒎 

Fractional 
Uncertainty 
in 𝒓𝟎 m∆𝒓𝟎

𝒓𝟎
n 

Mean 
𝒗𝒕/𝒎𝒔b𝟏 

Viscosity 
𝜼	/𝑷𝒂𝒔 

Fractional 
Uncertainty 

in 𝜼 m∆𝜼
𝜼
n 

Uncertainty 
in 𝜼 

(∆𝜼/𝑷𝒂𝒔) 

0.120 0.0015 0.067 0.0275 1.21 0.182 0.22 

0.254 0.0032 0.031 0.0744 2.04 0.111 0.23 

0.381 0.0048 0.021 0.0901 3.79 0.090 0.34 

0.508 0.0064 0.016 0.0654 9.28 0.080 0.74 

0.635 0.0079 0.013 0.0337 27.4 0.074 2.0 

0.762 0.0095 0.011 0.0062 215 0.069 15 
 

Table 6 – Calculated Viscosities and Uncertainties 
 

 Calculating the Viscosity Ratio 
 
In order to calculate the relative drag 𝑘450% =

£¤
£¥

= ±
±¥

, the value of 𝜂� (viscosity measured 

in an unbounded medium) must be estimated. This is done by performing a non-linear 

extrapolation of data for viscosities, and estimating the value of viscosity when 𝑐 = 0. 

 
While there is no theoretical reference justifying an exponential fit of this data, this is chosen 

over high-order polynomial fitting because the predictable trend is one that clearly rises from 

a fixed value at	𝑐 = 0 at a constantly increasing rate for 𝑐 < 1. For polynomial fits, the gradient 

and value do not increase in the above region. Furthermore, this fit has lower complexity (fewer 

parameters) than high-order polynomials, reducing the sources of error. 
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Due to the large value of the calculated viscosity for 𝑐 = 0.762, and hence large absolute error, 

it is discounted in the fitting of the data for extrapolation, as an uncertainty of 30 Pas allows 

for significant variation in the trendline that can be fitted. Furthermore, the application of this 

results in error greater than the smallest value of 𝜂 itself. 

 
The equation found (of the form 𝑎 + 𝑏𝑒º`) was: 
 

𝜂 = 1.115276 + 0.07967223𝑒».cUcl¼c2	 (41) 
 
The R2 value of this fit was 0.9999, and the standard error (SE) of points not directly lying on 

the curve (residuals) was 0.1544 Pa s. This value is the root mean square of the difference 

between the residuals and the curve, and is hence considered to be the uncertainty when 

extrapolated to 𝑐 = 0. Hence: 

 
𝜂� = 1.115276 + 0.07967223𝑒».cUcl¼c(W) = 1.115276 + 0.07967223

= (1.1949823	 ± 0.1544)	𝑃𝑎	𝑠 

∆𝜂� = 0.1544	𝑃𝑎	𝑠 

 

Given a calculation of all other viscosities with 𝜇 < 10 to two decimal places, this is 

approximated to (1.19	 ± 0.15)	𝑃𝑎	𝑠. 

 

The fractional uncertainty in 𝜂� is: 

 
∆𝜂�
𝜂�

=
0.15
1.19 ≈ 0.13 

 
The total uncertainty in 𝑘450% =

±
±¥

 is: 

m∆𝜂𝜂�
n

m 𝜂𝜂�
n
=
∆𝜂�
𝜂�

+
∆𝜂
𝜂 	

(42) 
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 Processed Data 
 
Data for the variation of 𝑘450% with 𝑐 is presented in Table 6. 
 

Relative 
Radius 
𝒄 = 𝑟W/𝑅 

Viscosity 
(𝜂) 𝑷𝒂	𝒔⁄  

Viscosity in 
Unbounded 

Medium 
(𝜂�) 𝑷𝒂	𝒔⁄  

Relative 
Drag 
(𝒌𝒅𝒓𝒂𝒈) 

Fractional 
Uncertainty in 
Relative Drag 

�∆𝒌𝒅𝒓𝒂𝒈	
𝒌𝒅𝒓𝒂𝒈

� 

Uncertainty in 
Relative Drag 
(∆𝒌𝒅𝒓𝒂𝒈) 

0.120 1.21 1.19 1.02 0.312 0.317 

0.254 2.04 1.19 1.71 0.241 0.413 

0.381 3.79 1.19 3.18 0.220 0.701 

0.508 9.28 1.19 7.80 0.210 1.64 

0.635 27.4 1.19 23.0 0.204 4.70 
0.762 215 1.19 181 0.199 36.0 

 
Table 7 – Processed Data 

 
This data is graphed in graphs 2a and 2b (due to difference in orders of magnitude, two graphs 

are presented to ensure clarity. 

 

 
 

Graph 2a – Excluding 𝑐 = 0.762	
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Graph 2b – Including 𝑐 = 0.762 
 

Curve fitting has not been applied due to the lack of theory supporting an exponential or power 

function model of this data, and the inability to fit as per equation (38) on Microsoft Excel. As 

seen in Graph 2a and 2b, the relative drag increases as c increases, at an increasing rate. 

 
 Comparison with Theoretical Model 

 
Uncertainties for the model are derived and calculated in Appendix 10.8. 

The difference to the theoretical model is the experimental relative drag minus the theoretical 

relative drag: 𝑬 = 𝒌𝒅𝒓𝒂𝒈(𝒆𝒙𝒑) − 𝒌𝒅𝒓𝒂𝒈(𝒄𝒂𝒍𝒄). The uncertainty in E	is ∆𝑬 

 

Relative 
Radius 
𝒄 = 𝑟W/𝑅 

Theoretical 
Relative Drag 
(𝒌𝒅𝒓𝒂𝒈(calc)) 

Uncertainty in 
𝒌𝒅𝒓𝒂𝒈(calc) 

(∆𝒌𝒅𝒓𝒂𝒈(calc)) 

Experimental 
Relative Drag 
(𝒌𝒅𝒓𝒂𝒈 (exp)) 

Uncertainty in 
𝒌𝒅𝒓𝒂𝒈(exp) 

(∆𝒌𝒅𝒓𝒂𝒈(exp)) 

Difference 
to 

Theoretical 
Model (E) 

Uncertainty 
in E (∆𝑬) 

0.12 1.06 9.55 1.02 0.317 -0.04 9.87 

0.254 1.14 1.48 1.71 0.413 0.57 1.90 

0.381 1.24 0.62 3.18 0.701 1.94 1.32 

0.508 1.37 0.36 7.8 1.64 6.43 2.00 

0.635 1.57 0.25 23 4.7 21.43 4.95 

0.762 1.88 0.20 181 36 179.12 36.20 
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Table 8 – Theoretical Comparison including Error 
 
The discrepancies are massive, far beyond the uncertainties permitted by the theoretical and 

experimental errors, and do not show any obvious quantitative trend. Due to this scale, 

theoretical and experimental values cannot be clearly represented on the same graph. Instead, 

ln(𝐸)	was plotted against 𝑐 instead. The exponential curve for 𝑬 = 𝒌𝒅𝒓𝒂𝒈(𝒆𝒙𝒑) −

𝒌𝒅𝒓𝒂𝒈(𝒄𝒂𝒍𝒄) was chosen purely due to its goodness of fit (R2 = 0.9831). It is unclear whether 

the negative difference for is 𝑐 = 0.12 is anomalous or not, due to the singular occurrence. 

Nonetheless, due to the single occurrence, it is ignored.  

 
Graph 3 – Error versus Theory; ln(E) against 𝑐 

 
ln(𝐸) = 11.0𝑐 − 3.52	 (43) 

 
𝐸 = 𝑒bU.Æl × 𝑒cc.W2	 (44) 

 
6. CONCLUSION 
 
Reconsidering the research question “How does the relative radius of a sphere affect the 

relative drag force it experiences in a bounded medium?”, it has been found that the relative 

drag (𝑘450%) increases, at an increasing rate, in the range 0 < 𝑐 = 5�
�
< 1. This qualitatively 

agrees with theoretical predictions. 
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7. EVALUATION 
 

Quantitatively, Equation (38) underestimates the experimental magnitude of the wall effect. It 

is not fully clear whether the error arises from experimental inaccuracy, theoretical inaccuracy, 

or some combination of both. To interpret this, literature data31 for glycerine at the same 

temperature is analysed and compared with the data generated by the experiment. A tabulated 

form of the data in Graph 3 was not provided by the authors. 5 arbitrary points were selected 

based on clarity, and straight lines parallel to the axes were used to determine their coordinates. 

 

 
 

Graph 4 – Data from Ataíde (et al)32 
 
The relative drag defined here was based on the terminal velocity ratio (𝑓" = È¤

È¥
). Hence: 

𝒌𝒅𝒓𝒂𝒈 =
𝟏
𝒇𝒘

.  No uncertainty is defined, and the values are assumed to be means due to single 

data points being present. 
  

                                                        
31 Ataíde, C. H., F. A. R. Pereira, and M. A. S. Barrozo. "Wall effects on the terminal velocity of spherical 
particles in Newtonian and non-Newtonian fluids." Brazilian Journal of Chemical Engineering 16.4 (1999): 387-
394. 
32 Ataíde, C. H., F. A. R. Pereira, and M. A. S. Barrozo. "Wall effects on the terminal velocity of spherical 
particles in Newtonian and non-Newtonian fluids." Brazilian Journal of Chemical Engineering 16.4 (1999): 387-
394. 
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Relative 
Radius 𝒄 =

𝑟W/𝑅 

Terminal 
Velocity Ratio 

("𝒇𝒘") 

Relative Drag 
(𝒌𝒅𝒓𝒂𝒈) 

0.095 0.835 1.20 

0.167 0.76 1.32 

0.390 0.477 2.10 

0.496 0.339 2.95 
0.606 0.165 6.06 

 
Table 9 – Data Points from Graph 3 

 
Fitting this data to a best-fit exponential curve (chosen for high R2 value = 0.9974); 

 
𝑦	 = 	1.206821	 + 	0.024637𝑒¼.ÌccTÍ¼`	 (45) 

 
This is used to generate data for the conducted experiment’s values for 𝑐 and compared with 

both theoretical and experimental data (from Table 8). 

 

Relative 
Radius 
𝒄 = 𝑟W/𝑅 

Literature Relative 
Drag 

(𝒌𝒅𝒓𝒂𝒈(lit))  

Theoretical Relative 
Drag  

(𝒌𝒅𝒓𝒂𝒈(calc)) 

Experimental 
Relative Drag 

(𝒌𝒅𝒓𝒂𝒈(exp)) 

0.12 1.28 1.06 1.02 

0.254 1.43 1.14 1.71 

0.381 1.89 1.24 3.18 

0.508 3.26 1.37 7.8 

0.635 7.43 1.57 23 

0.762 20.0 1.88 181 

 
Table 10 – Literature Estimates of 𝒌𝒅𝒓𝒂𝒈 

 
Generally, literature values under-predict the values for experimental 	

𝒌𝒅𝒓𝒂𝒈 measurements too, but, excluding the value for 𝑐 = 0.762, these deviate on the same 

order of magnitude as the experimental data. However, considering the great variation in 𝑓"  on 

Graph 3 (vertically), the literature data has a high variance, and the data points are too close 
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together to accurately estimate this. The experimental data can therefore be considered fairly 

consistent with literature.  

 
The theoretical underestimation drastically increases with 𝑐. When 𝑐 = 0.762, the data is likely 

erroneous and significantly deviating from literature because of the large r0 and relative drag, 

which caused far lesser space between glass and ball. Direct contact between the two was not 

observed, which implies a radius-dependent fluid phenomenon. This could be due to the 

adhesive forces in boundary layers formed around the objects, that may exist between glass 

and ball directly in closed space. In addition, pressure drag may also increase if space between 

cylinder and fluid is smaller.  

 
The inability to quantify experimental uncertainties directly in video analysis is a major issue. 

Parallax error cannot be analytically determined and the use of statistical measures of deviation 

is not wholly representative of the error allowed. Replacing video analysis with an array of 

photogate sensors would allow for far more accurate data, but these were unavailable. The 

release mechanism used has a significant impact for larger balls, which rested unstably and had 

to be carefully dropped. A mechanical mechanism where each size of ball is held tighter would 

likely lead to better results, which too was unavailable in this investigation. 

 
Although the theoretically derived quantitative formula remains unjustified by experiment, one 

corrected for underestimation is derived by adding the error as a function of the relative radius 

c (Equation (44)) to this (Equation (38)). 

 

𝑘450% =
4
3𝑐l ln �

1
1 − 𝑐� −

4
3𝑐 +

1
3 + (𝑒

bU.Æl × 𝑒cc.W2) (46)	 

 
Overall, this agrees with experimental data that can be considered valid. Building on this 

understanding with studies recommended below can produce beneficial results for estimating 

the wall effect for biological or biotechnological applications. 
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8. FURTHER STUDIES 
 

- Studies using multiple cylinder sizes and theoretical estimates for each could verify the 

contributions of boundary layers and any other non-linear effects. 

- Non-linear analysis of the effects of the Reynolds’ Number, and using several fluids of 

high viscosity would also enable extrapolation of the results to Re = 0 for increased 

accuracy of results.  

- CFD (Computational Fluid Dynamics) simulations can be used to study the effect of the 

higher than one Reynolds numbers on the flow, and any impact on the drag force 

experienced. This could allow observational analysis of these non-linear effects.  
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10. APPENDIX 
 

 Researcher’s Reflection Space 
 
Both the difficulty and the breadth of things one must consider in narrowing down the research 

focus resulted in inhibitions in choosing Physics for the Extended Essay. However, these were 

diffused by how interesting potential topics were and the scope for my contributions. My initial 

interest was to understand the non-linear angular dependence of a pendulums period, 

frequency, and damping, through advanced math and experiment, because the validity of the 

small-angle approximation had always intrigued me. However, I was dissuaded from doing so 

due to the several other minute non-linearities that would have an impact. I was initially 

disheartened, but a discussion with my supervisors on alternatives assured me that I could 

continue with Physics. 

 

I chose to consider a similar topic, in that it explores an effect otherwise approximated for 

simplicity, which introduced me to a new perspective on a familiar concept. I was drawn to 

drag and fluid dynamics due to their relation to the avenue of damping in the first topic. 

Initially, I thought about how there were two different formulae for drag under different 

conditions – one proportional to velocity and one to velocity squared. What would the 

relationship be in intermediate conditions? What other factors influence the validity of these 

equations? As I considered the means available to me to test any hypotheses, the most effective 

way to do so appeared to be motion through tubes. Here, the wall seemed to be likely to have 

major influence, and yet was never an effect I had been acquainted with. Hence, I chose to 

continue with the initial RQ: “What is the effect of the proximity to the wall on drag?”.  

 

Here, the options for experiment included CFD Simulations, Flow Analysis, Horizontal Motion 

of Fluid over a fixed object, or objects falling through the tube. I chose the last one due to the 

established efficacy and potential to further modify rather than just achieve. I made the 

following initial roadmap: 
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Figure 10.1.1 – Mind Map 

 

Following data collection stages, analysis and evaluation would be performed, and subsequent 

drafts would be written after consultation with my supervisor. 

 

Upon gaining an understanding of the work already done, I began articulating the variables in 

terms of relative radius and ‘wall factor’, which I redefined more intuitively as ‘relative drag’. 

My intention was first to emphasize the fitting, statistical, and analytical aspects of the research. 

This allowed me to reframe the RQ as “How does the relative radius of a sphere affect the 

relative drag force it experiences in a bounded medium?”. 

 

To this end, I wished to remove the effect of even the already low Reynolds’ Number by 

conducting at different glycerin concentrations and approximating the ‘wall factor’ to Re = 0, 

and perhaps even correlate observations to those obtained through simulations. However, the 

limited time and space were a constraint that meant many of these had to be excluded. After 

learning the math behind these concepts, I was very excited by the apparent potential of 

developing a new formula myself. Although it required multiple days of failures and correcting 

approaches, I was extremely happy when I finalized a formula that not only was correct in its 

derivation, but also adhered perfectly by the variables posited through experiment in literature. 
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This meant I had to make the decision to reallocate my time towards analysing data in light of 

this theory rather than developing a unique correction formula, which was a difficult decision 

but ultimately the right one. This is because it led to the justification of a concept that could, if 

worked on, potentially be useful to research and engineering in the field too. 

 

Upon completing the data analysis, I was somewhat disappointed when there was a large 

quantitative discrepancy between the results the formula predicted and those I obtained. These 

were noticeable in some unexpectedly slow experimental observations, but I was hoping these 

were anomalous to specific values, which unfortunately was not the case. 

 

First, I had to understand whether the error was in experiment or in theory. I did so by 

extrapolating literature data presented in direct graphic form, using a different variable. This 

seemed unreliable and I was uncertain about if it would be indicative of much. However, it did 

qualitatively appear to support the hypothesis that the theoretical formula was erroneous. I then 

had to consider why this was so, which revealed plausible concepts whose analysis I could not 

have incorporated into this experimental design. If I were to restart or study further, I would 

try to model these effects theoretically and incorporate these into my theory, as well as execute 

the statistical and more rigorous experimental procedures I had in mind earlier. 

 

Following the finishing of my draft, my supervisor helped me review at the essay from the 

perspective of someone who has not spent time exploring these concepts, and bring clarity to 

both the KQ and introductory elements of the essay. Doing so contributed to my 

communication skills where the aspect of presenting research and new information is 

concerned. Overall, the entire process was very gratifying, both in furthering my research skills 

and experience, as well as approach to choosing and making the most of appropriate research 

topics from a practical standpoint too. I am happy with the work I have done and am hopeful 

to perhaps address many of the further questions and facets that I was unable to include in the 

essay independently. 
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 Derivation of Equation (21) 
 

𝑢 = �
1
2𝜂� �

𝑑𝑝
𝑑𝑥� 𝑦

l + 𝑐c𝑦 +	𝑐l (10.2.1 = 20) 

 
Given the no-slip condition, 𝑢 = 0 at 𝑦 = 0 and	𝑦 = ℎ. 
 

0 = �
1
2𝜂� �

𝑑𝑝
𝑑𝑥�

(0) + 𝑐c(0) +	𝑐l (10.2.2) 

𝑐l = 0 (10.2.3) 

0 = �
1
2𝜂� �

𝑑𝑝
𝑑𝑥�

(ℎl) + 𝑐c(ℎ) (10.2.4) 

−�
1
2𝜂� �

𝑑𝑝
𝑑𝑥�

(ℎl) = 𝑐c(ℎ) (10.2.5) 

𝑐c = −�
1
2𝜂� �

𝑑𝑝
𝑑𝑥�

(ℎ)	 (10.2.6) 

 
Substituting 𝑐c into Equation (20): 
 

𝑢 = �
1
2𝜂� �

𝑑𝑝
𝑑𝑥�𝑦

l − �
1
2𝜂� �

𝑑𝑝
𝑑𝑥�ℎ𝑦	

(10.2.7) 

𝑢 = �
1
2𝜂� �

𝑑𝑝
𝑑𝑥�

|𝑦(𝑦 − ℎ)} (10.2.8 = 21) 
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 Integration of Equation (31) 
 

𝐹E5$2'$.1("0FF) = x 𝜏 sin 𝜃 𝑑𝐴
y

W
= 	
−4𝜂𝑣
𝑟W

x x
𝑟l

𝑅 − 𝑟

5�

W

l�

W
	𝑑𝑟	𝑑𝜙	 (10.3.1 = 31) 

 
First, the interior integral is solved using u-substitution: 
 

	x
𝑟l

𝑅 − 𝑟

5�

W
𝑑𝑟	 (10.3.2) 

𝑢 = 𝑅 − 𝑟	 (10.3.3) 
𝑑𝑢
𝑑𝑟 = −1	 (10.3.4) 

𝑑𝑟 = −𝑑𝑢	 (10.3.5) 

= −x
(𝑅 − 𝑢)l

𝑢

5�

W
𝑑𝑢 = −x (

𝑅l

𝑢

5�

W
− 2𝑅 + 𝑢)𝑑𝑢 (10.3.6) 

= − �𝑅l ln|𝑢| − 2𝑅𝑢 +
𝑢l

2
�
W

5�

= −�𝑅l ln|𝑅 − 𝑟| − 2𝑅(𝑅 − 𝑟) +
(𝑅 − 𝑟)l

2
�
W

5�

	 (10.3.7) 

= −�𝑅l ln|𝑅 − 𝑟W| − 2𝑅(𝑅 − 𝑟W) +
(𝑅 − 𝑟W)l

2 − 𝑅l ln|𝑅| + 2𝑅l −
𝑅l

2
�	 (10.3.8) 

= − �𝑅l ln �
𝑅 − 𝑟W
𝑅 � + 2𝑅𝑟W +

𝑅l − 2𝑅𝑟W + 𝑟Wl

2 −
𝑅l

2
�	 (10.3.9) 

= − �𝑅l ln �
𝑅 − 𝑟W
𝑅 � + 2𝑅𝑟W +

−2𝑅𝑟W + 𝑟Wl

2
�	 (10.3.10) 

= �𝑅l ln �
𝑅

𝑅 − 𝑟W
� − 2𝑅𝑟W +

2𝑅𝑟W − 𝑟Wl

2
� (10.3.11) 

 
Since no 𝜙 terms are contained in equation (A2.11), the exterior integral is only multiplication 

with 2𝜋. 𝐹E5$2'$.1("0FF) is found by multiplying this with bT±È
5�

, leading to: 

 
−8𝜂𝑣
𝑟W

�𝑅l ln �
𝑅

𝑅 − 𝑟W
� − 2𝑅𝑟W +

2𝑅𝑟W − 𝑟Wl

2
�	 (10.3.12) 

 
As drag is a resistive force, the value is negative. The magnitude hence is: 
 

8𝜂𝑣
𝑟W

�𝑅l ln �
𝑅

𝑅 − 𝑟W
� − 2𝑅𝑟W +

2𝑅𝑟W − 𝑟Wl

2
�	 (10.3.13 = 32) 
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 Vernier Calliper Measurements 
 

Ball Radius (𝒓𝟎)/𝒄𝒎 

Main Scale/cm Vernier Scale/cm (𝒓𝟎 ± 𝟎. 𝟎𝟏)cm 

0.1 0.05 0.15 
0.3 0.02 0.32 
0.4 0.08 0.48 
0.6 0.04 0.64 
0.7 0.09 0.79 
0.9 0.05 0.95 

Tube	Radius (𝑹)/𝒄𝒎 

Main Scale Vernier Scale (𝑹 ± 𝟎. 𝟎𝟏)cm 

1.2 0.05 1.25 
Table 10.4.1 – Vernier Calliper Measurements 

 
 Temperature Dependence of Density – Interpolation 

 
Data for the variation of glycerol density with temperature and percentage (by weight) of 

glycerol was extracted from literature33. The data used for 100%Wt Glycerol is tabulated 

below. No uncertainties from the literature values were provided. 

Temperature(T)/℃  Density/𝒈𝒄𝒎b𝟑 Density (𝝆)/𝒌𝒈𝒎b𝟑 

0 1.18273 1182.73 
10 1.15604 1156.04 
20 1.13018 1130.18 
30 1.10388 1103.88 
40 1.07733 1077.33 
50 1.05211 1052.11 
60 1.02735 1027.35 
70 1.00392 1003.92 
80 0.98181 981.81 
90 0.95838 958.38 
Table 10.5.1 – Density vs Temperature (Literature) 

 

                                                        
33 Glycerine Producers' Association. Physical properties of glycerine and its solutions. Glycerine Producers' 
Association, 1963. 
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In order to determine the density (with uncertainties) at 𝑇 = 25℃, this was linearly modelled, 

yielding a high R2 value of 0.999.  

 
𝜌 = 2.50𝑇	 + 	954.88 (10.5.1) 

 
At 𝑇 = 25℃, this equates to 𝜌 = 1017.38	𝑘𝑔𝑚bU. Uncertainties were calculated on the basis 

of the experimental uncertainty in	𝑇, which was ±0.25℃ in an analogue thermometer. The 

uncertainty in density is equal to the difference between 𝜌 when	𝑇 = 25.25℃ and 𝜌 when	𝑇 =

25℃. In a linear model, this is identical to the difference between 𝜌 when	𝑇 = 25℃ and 𝜌 

when	𝑇 = 24.75℃ too. Hence: 

 
∆𝜌 = 2.50(25.25) − 2.50(25) = 0.625𝑘𝑔𝑚bU ≈ 0.63𝑘𝑔𝑚bU	 (10.5.2) 

 
Hence: 𝜌 = (1017.38 ± 0.63)𝑘𝑔𝑚bU. 
 

 Temperature Dependence of Viscosity – Interpolation 
 
The same analysis was carried out for glycerol (100%wt) viscosity and temperature, with 

data extracted from literature34. This is tabulated below. The units were converted from 

centipoises (cP) to Pascal-seconds (Pas) by dividing by 1 × 10Í. No uncertainties from the 

literature values were provided. 

 

Temperature(T)/℃ Viscosity/𝒄𝑷 Viscosity (𝜼)/𝑷𝒂𝑺 

0 12070000 12.07 
10 3900000 3.90 
20 1410000 1.41 
30 612000 0.612 
40 284000 0.284 

 
Table 10.6.1 – Viscosity vs Temperature (Literature) 

 
These were modelled using a polynomial of order 4. This is graphed below. 

                                                        
34 Glycerine Producers' Association. Physical properties of glycerine and its solutions. Glycerine Producers' 
Association, 1963. 
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Graph 10.6.1 – Viscosity vs Temperature Data (Literature) 

 
𝜂 = 0.00001153𝑇T 	− 	0.001356𝑇U 	+ 	0.06102𝑇l 	− 	1.303𝑇 + 	12.07	 (10.6.1) 

 
At 𝑇 = 25℃, this equates to 𝜂 = 0.9489𝑃𝑎𝑠. The uncertainty is computed by finding the 

difference between 𝜂(𝑇 = 25.25) and	𝜂(𝑇 = 24.75), and dividing this by 2. 

 

∆𝜂 =
𝜂(𝑇 = 25.25) − 𝜂(𝑇 = 24.75)

2 =
0.9674 − 0.9306

2 = 0.0184	𝑃𝑎𝑠 

 
Hence, at 𝑇 = 25℃: 

𝜂 = (0.9489 ± 0.0184)	𝑃𝑎	𝑠 
 
 

 Uncertainty in c 
 

𝑐 =
𝑟W
𝑅 	

(10.7.1) 

 
∆𝑐
𝑐 =

∆𝑟W
𝑟W

+
∆𝑅
𝑅 		 (10.7.2) 

 
∆�
�

 is a constant as only one value of R is used: 
 

∆𝑅
𝑅 =

0.01𝑐𝑚
1.25𝑐𝑚 = 0.008 

 
∆5�
5�

 is dependent on each value of 𝑟W, with ∆𝑟W constant at 0.01cm. These values are tabulated 

below, and each corresponding value of ∆2
2

 is computed. 

y = 1E-05x4 - 0.0014x3 + 0.061x2 - 1.3031x + 12.07
R² = 1
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Ball Radius 
(𝒓𝟎/𝒄𝒎) 

Fractional 
Uncertainty in 𝒓𝟎 

m∆𝒓𝟎
𝒓𝟎
n 

Fractional 
Uncertainty in 

Relative Radius c 

�
∆𝒄
𝒄 � 

Absolute 
Uncertainty in 

Relative Radius c 
∆𝒄 

0.15 0.067 0.075 0.0090 
0.32 0.031 0.039 0.010 
0.48 0.021 0.029 0.011 
0.64 0.016 0.024 0.012 
0.79 0.013 0.021 0.013 
0.95 0.011 0.019 0.014 

 
Table 10.7.1 – Uncertainty Computation for c 

 
 Uncertainties in Theoretical Values 

 

𝑘450% =
4
3𝑐l ln �

1
1 − 𝑐� −

4
3𝑐 +

1
3		

(10.8.1 = 38) 

 
To find ∆𝑘450%, 𝑘450% terms containing c can be separated: 
 

𝐴 =
4
3𝑐l ln �

1
1 − 𝑐�	

(10.8.2) 

𝐵 =
4
3𝑐

(10.8.3) 

𝑘450% = 𝐴 − 𝐵 +
1
3

(10.8.4)		 

∆𝑘450% = ∆𝐴 + ∆𝐵 (10.8.5) 

 
Term A can be separated into two terms multiplied together: 
 

𝑇c =
4
3𝑐l

(10.8.6) 

𝑇l = ln �
1

1 − 𝑐�
(10.8.7) 

∆𝐴
𝐴 =

∆𝑇c
𝑇c

+
∆𝑇l
𝑇l

	 (10.8.8) 

 

The fractional uncertainty in	𝑇c (∆�Ø
�Ø
) is equal to the fractional uncertainty of the reciprocal: 



Session May 2020 
 
How does the relative radius of a sphere affect the relative drag force it experiences in a bounded medium? 
 

 45 

 
∆𝑇c
𝑇c

=
∆(0.75𝑐l)
(0.75𝑐l) = 2

∆𝑐
𝑐 	

(10.8.9) 

 
The absolute uncertainty of 𝑇l (∆𝑇l) is equal to the fractional uncertainty of what is inside the 

logarithm ( c
cb2

). 

∆𝑇l =
∆m 1
1 − 𝑐n

m 1
1 − 𝑐n

(10.8.10)	 

 

By the reciprocal rule of fractional uncertainties: 
 

∆𝑇l =
∆(1 − 𝑐)
(1 − 𝑐) =

∆𝑐
𝑐

(10.8.11) 

 
Therefore: 

∆𝑇l
𝑇l

=
∆𝑐
𝑐

ln Ù 1
1 − 𝑐Ù

(10.8.12) 

 

∆𝐴
𝐴 = 2

∆𝑐
𝑐 +

∆𝑐
𝑐

ln Ù 1
1 − 𝑐Ù

(10.8.13) 

 

∆𝐴 = Ú2
∆𝑐
𝑐 +

∆𝑐
𝑐

ln Ù 1
1 − 𝑐Ù

Û ×
4
3𝑐l ln �

1
1 − 𝑐�

(10.8.14) 

 
Term B has fractional uncertainty equivalent to the reciprocal: 
 

∆𝐵
𝐵 =

∆(0.75𝑐)
(0.75𝑐) =

∆𝑐
𝑐

(10.8.15) 

∆𝐵 =
∆𝑐
𝑐 ×

4
3𝑐

(10.8.16) 

 
Hence: 
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∆𝑘450% = Ú2
∆𝑐
𝑐 +

∆𝑐
𝑐

ln Ù 1
1 − 𝑐Ù

Û ×
4
3𝑐l ln �

1
1 − 𝑐� + �

∆𝑐
𝑐 ×

4
3𝑐�	

(10.8.17) 

 
 
This was computed for each value of c. 
 

Relative Radius (𝒄) 
Absolute Uncertainty 

in Relative Drag 
∆𝒌𝒅𝒓𝒂𝒈 

0.12 9.55 
0.254 1.48 
0.381 0.62 
0.508 0.36 
0.635 0.25 
0.762 0.20 

 
Table 10.8.1 - ∆𝒌𝒅𝒓𝒂𝒈 values. 

 
The uncertainties are non-intuitive due to the formula’s complexity. 


